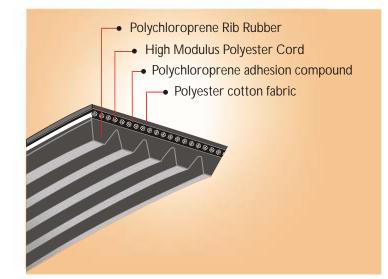
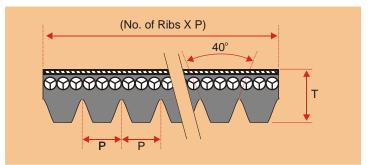
FOR OFFICE MULTI - PULL POLY - V BELTS


Standards : ISO 9982, RMA IP-26, DIN 7867

The name Fenner has been synonymous with quality and reliability in Mechanical Power Transmission Products for over 140 years. Fenner V-belts, Pulleys, Couplings and Gear Boxes have become the industry bench marks over the years manufactured in state-of-art facilities conforming to quality standards ISO-9001:2000 & ISO/TS-16949:2002 along with ISO 14001:1996 for Environmental Management System. Fenner has the unique distinction of being the only company in India to be accredited with API certification.


Multi-Pull Ribbed belts offer high power capacity in a single flexible low stretch belt. The continuous high tensile synthetic cord makes maximum utilization of the face width and ensures a uniform tension throughout the belt.

There are five sections available:

- **PH-** Fractional Horse Power belt for very light duty applications.
- PJ Low cost belt for light duty applications.
- **PK** Designed specifically for the automotive industry, it is also suitable for Machine Tool drives etc.
- PL Medium duty drive belt covering a wide range of applications.
- **PM** High performance makes this belt unrivalled for heavy duty applications.

SECTION	PITCH(P) (mm)	THICKNESS(T) (mm)	MAX .NO OF RIBS/SLEEVE		
PH	1.60	2.90	24		
PJ	2.34	3.80	96		
PK	3.56	4.50	24		
PL	4.70	7.00	50		
PM	9.40	13.50	40		

FEATURES

COMPACT DRIVE

POLY-V belt is highly flexible and hence can be used with smaller pulley diameters to give a lighter and compact drive.

HIGHER POWER

40% higher power rating per unit width compared to conventional V-belts.

ZERO SLIPPAGE

Almost eliminates the slippage due to maximum wedge contact on the pulleys.

ENERGY SAVING

Maximum returns with energy saving upto 6%.

REAR SIDE DRIVE

Being thinner the rear side can be used to drive additional accessories / idlers without affecting life.

HIGHER BEARING LIFE

Lesser static tension gives higher bearing life.

SILENT DRIVE

Gives vibration and noise free power transmission in every application.

SINGLE BELT

Eliminates the necessity to use multiple / matched set belts.

HIGHER SPEED

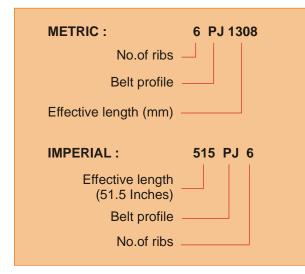
Can be used at higher speed more than 40 m/sec.

LONGER LIFE

Gives lesser wear and longer life to the pulleys due to lesser static tension and belt slippage.

LOW DOWNTIME & REPLACEMENT COST

Reduces downtime and also belt replacement cost.



STANDARD BELT LENGTHS

Р	Ч		P	-]	Р	К		Р			PM	
Effective	e Length		Effective	e Length		Effective	e Length		Effective			Effective	
mm	inch		mm	inch	-	mm 610	inch		mm	inch		mm	inch
1321	52		483	19		610 660	24 26		1270	50		2311	91
1346	53		508	20		673	26.5		1334	52.5		2388	94
1372 1397	54 55		559 584	22 23		686	27		1372 1397	54 55		2515 2692	99 106
1422	56		610	23		699	27.5		1422	56		2832	111.5
1473	58		660	26		711	28		1473	58		2921	115
1549	61		711	28		739 762	29.1 30		1562	61.5		3010	118.5
1588	62.5		724	28.5		775	30.5		1613	63.5		3124	123
1664 1753	65.5 69		762 813	30 32		790	31.1		1664 1715	65.5 67.5		3327 3531	131 139
1854	73		864	34		818	32.2		1803	71		3734	139
1892	74.5		914	36		841 871	33.1 34.3		1842	72.5		4089	161
1905	75		940	37		884	34.3 34.8		1943	76.5		4191	165
1930 1956	76 77		965 1016	38 40		902	35.5		1981 2019	78 79.5		4470 4648	176 183
1969	77.5		1018	40		914	36		2019	79.5 81.5		4048 5029	198
1981	78		1092	43		927 940	36.5 37		2096	82.5		5410	213
1994	78.5		1105	43.5		940	37.6		2134	84		6121	241
2007	79 80		1118	44		970	38.2		2197	86.5		6883 7645	271
2032 2057	80 81		1130 1143	44.5 45		991	39		2235 2324	88 91.5		7645 8407	301 331
2083	82		1168	46		1016	40		2362	93		9169	361
2108	83		1194	47		1031 1054	40.6 41.5		2477	97.5		9931	391
2134	84		1219	48		1080	42.5		2515	99		10693	421
2159 2184	85 86		1232 1245	48.5 49		1110	43.7		2705 2743	106.5 108		12217 13741	481 541
2104	87		1245	49 50		1146	45.1		2845	112		13970	550
2235	88		1283	50.5		1166 1194	45.9 47		2896	114		13995	551
2261	89		1295	51		1229	48.4		2921	115			
2286 2311	90 91		1308 1321	51.5 52		1257	49.5		2997 3086	118 121.5			
2337	92		1346	53		1295	51		3124	121.3		Sizes not li can also be	
2362	93		1372	54		1334 1359	52.5 53.5		3289	129.5		subject to r	ninimum
2388	94		1397	55		1387	54.6		3327	131		order quan	
2413 2438	95 96		1422 1473	56 58		1425	56.1		3493 3696	137.5 145.5		Consult Fe	nner
2464	97		1549	61		1461	57.5		4051	145.5			
2489	98		1588	62.5		1496 1529	58.9 60.2		4191	165			
2515	99		1651	65		1529	60.2 61.4		4470	176			
2540	100		1664 1753	65.5		1626	64		4623	182			
			1854	69 73		1659	65.3		5029 5385	198 212			
			1892	74.5		1681	66.2		6096	240			
			1905	75		1725 1760	67.9 69.3		6121	241			
			1956	77		1796	70.7		6883	271			
			1969 1994	77.5 78.5		1829	72		7645 8407	301 331			
			2083	82		1862	73.3		9169	361			
			2210	87		1900 1930	74.8 76		9931	391			
			2261	89		1948	76.7		10693	421			
			2286 2337	90 92		1961	77.2		12217 13741	481 541			
			2388	94		1981	78		13970	550			
			2438	96		2050 2101	80.7 82.7		13995	551			
		117	2489	98		2144	84.4						
		L	2540	100		2205	86.8			ARRONAL AND			
		10				2258	88.9		1N 28 1N 28	FENNER MULTI-PULL 2	1PL 1900		
- 4						2329 2385	91.7 93.9		1N 28 1N 28 1N 28 1N 28 1N 28	FENNER MULTI-PULL FENNER MULTI-PULL FENNER MULTI-PULL FENNER MULTI-PULL	21PL 1900 21PL 1900 21PL 1900		
11		E				2303	96.1		1N 2 1N 2	FENNER MULTI-PULL FENNER MULTI-PULL	21PL 1900 21PL 1900 21PL 1900	the second	
						2479	97.6			1120			
						2522	99.3		Constant and a	100	-		1
	10-					2586 2611	101.8 102.8		the set of the set				APP
THE R. L. L.						2680	102.8						
and the second second						2835	111.6		1 de			- Martin	and a
montantin .	2					2845	112		V THEFT			and the second	100
						2896 2921	114 115			10	P	-	
						2921	115 118			4			1
					1	2007	10	I				100	a de la com

DESIGNATION OF BELTS

INSTALLATION INSTRUCTIONS

1. PULLEYS

Before assembling the drive, check the pulley grooves are free from scores or sharp edges, and are dimensionally correct.

2. ALIGNMENT

Good alignment of pulleys prior to belt installation is important. The pulleys may be aligned by placing a straight edge or cord along the edges. The shafts must also be parallel and in the same plane.

3. BELTS

When pulleys have been correctly positioned on the shafts, the belts can be installed to complete the drive. The drive centre distance should be reduced prior to the installation of the belts so that they may be fitted without the use of force. Under no circumstances must belts be prised into the grooves. Belt and pulley grooves can easily be damaged by using sharp tools to stretch the belts over the pulley rim.

The installation allowance given in the table below is the minimum recommended reduction in centre distance for the various belt section and lengths to allow for correct fitting. The take-up allowance given in the same table should be added on to the calculated centre distance to allow for belt stretch. Rotate the drive while tightening the belt in order to equalize the tension.

The belt should be run under load and observed during the first few hours. After several hours running re-check the tension, it may be necessary to take up adjustment to compensate for normal drop in tension during the running in period.

4. GUARDS

Where guards are necessary it is desirable to use the mesh type to permit adequate ventilation.

5. IDLER PULLEYS

If idler pulleys are used it is recommended that they be as large a diameter as practical. All idlers should be located on the slack side of the drive. When used on the inside the idler should have the same groove profile as the driver and driven pulleys. The pulley should be positioned as close as possible to the large pulley. Minimum pitch diameters are listed in the table below. When using on the outside, the idler should be flat (not crowned) and positioned as close as possible to the small pulley.

Minimum	PH	PJ	PK	PL	PM
effective diameter of Pulley (mm)	13	20	50	75	180

Section	Minimum Diameter (mm)				
Section	Idler on Inside	Idler on Outside			
PJ	20	40			
PK	38	75			
PL	100	200			
PM	224	375			

SERPENTINE DRIVES -

For selection Consult Fenner

Multi-Pull is a flexible belt and can be reverse bent round a pulley. The outside of the belt can be used to drive. This enables Multi-Pull to be used on Multi-Pulley or Serpentine Drives.


TENSIONING INSTRUCTIONS

DEFLECTION METHOD

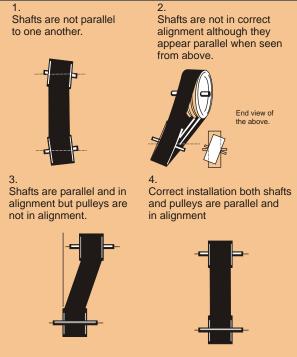
Multi-Pull Drives will be sufficiently tensioned if the deflection force 'F' applied perpendicular at midspan to produce a deflection equal to 16 mm per metre of span distance falls within the range given in the table below.

To improve tensioning accuracy the drive should be run briefly to seat the belt before making final measurement. A new belt should be tensioned to the higher value. Re-tensioning how-ever should be toward the lower value.

A straight edge should be placed across the pulleys to act as datum for measuring the amount of deflection. Calculate the deflection in mm on a basis of 16 mm per metre of centre distance.

TENSIONING FORCES

Belt Section	Force required to deflect belt 16 mm per metre of span						
	Small Pulley Diameter (mm)	Newton (N) per rib	Kilogram force (kgf) per rib				
	Below 45	1.6 to 3.0	0.16 to 0.30				
PJ	45 - 66	3.0 to 5.0	0.30 to 0.50				
	67 - 125	4.0 to 7.0	0.40 to 0.70				
Ы	below 160	10 to 15	1.0 to 1.5				
PL	160 - 224	12 to 20	1.2 to 2.0				
РМ	below 355	30 to 45	3.0 to 4.5				
	355 - 560	35 to 60	3.5 to 6.0				


The above tensioning forces are for average drive conditions. A precise belt tensioning force can be calculated - contact Fenner Technical Services Although this is the preferred method of tensioning it may prove impractical. In this case the elongation method can be used.

ELONGATION METHOD

Mark two reference lines on the back of the belt, at approximately 80% of the span length, tighten the belt until the extension of the reference lines correspond with values given in the table below. New belts should be installed with an elongation towards the higher value and re-tensioned towards the lower value.

Belt Section	Pulley Diameter Range mm	Elongation mm / metre		
	Below 45	3 - 4		
PJ	45 - 66	4 - 6		
	67 - 125	6 - 7		
PL	below 160	5 - 7		
PL	160 - 224	7 - 9		
РМ	below 355	4 - 5		
F'IVI	355 - 560	5 - 7		

SHAFT ALIGNMENT

The dotted lines emphasize the faults by indicating the correct position.

Pulleys should be mounted as close as possible to the bearings to reduce overhung load.

The maximum axial misalignment allowed is 3 mm per metre centre distance (maximum 15 mm).

Shaft parallelism must be kept within 2 degree.

TENSIONING THE BELT

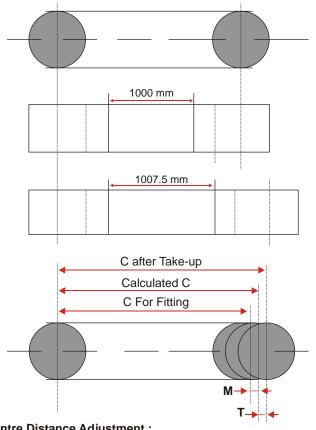
Fenner Multipull Belts must be tensioned correctly and with great care. The under or over tensioning can cause functional problems and lead to premature belt failure.

We recommend the elongation method, which is simple and requires no special equipment.

- 1. Fit the belt on the pulleys with no tension.
- 2.Draw two lines perpendicularly across the back of the belt about 80% of the belt span apart (or one metre apart for very long spans).
- 3.Increase the distance between the two lines by 0.5 to 0.75% i.e. by 5mm to 7.5mm for an initial spacing of 1000 mm.
- 4. Run the drive under load for about 10 minutes.
- 5. Check the tension of the belt (i.e. the spacing between the two lines) and readjust if necessary.

Generally the tensioning values for each section are maintained as under:

PJ	РК	PL	РМ
0.5%	0.6%	0.6%	0.6%


Fenner (India) Limited

(An associate company of the J.K.Organisation)

Corporate Office: Khivraj Complex II, V Floor, 480, Anna Salai, Nandanam, Chennai-600 035. Tel: 24312450 to 57

Fax: 044 - 24349016, 24320193. E.mail: pt d_mhq@fennermail.com Website: www.fennerindia.com Registered Office: 3, Madurai - Melakkal Road, Kochadai, Madurai - 625 016. Tel: 2383801, 2383802 Fax: 0452 - 2383822.

Branches at : Ahmedabad : Shreeji House, 3rd Floor, Behind M.J.Library, Ellis Bridge, Ahmedabad - 386 006. Tel: 26578572, 26578590. **Bangalore :** 29/A, First Floor, Kengal Hanumanthaiah Road, Bangalore - 560 027. Tel: 22225223, 22297193 Fax : 080 - 22225223. **Indore**: 24, Sitabagh Colony, Dhenu Market, Indore - 452 001, Tel : 2538248. **Jaipur :** A-21, Opp. State Bank of India, Bais Godown, Industrial Area, Jaipur-302006, Tel: 0141-2211075, 3270878. **Jamshedpur :** M.P. Road, Khemka Market, Jugsalai, Jamshedpur - 831006. Tel.: 0657-2430060, 2440762. **Kanpur :** 112/371 (A), Swaroop Nagar, Kanpur - 208 002, Tel :2292304, 2294615, Fax: 0512-2294071. **Kochi :** 266-A & B, Temple Road, Koonamthai, Changampuzha Nagar, Kalamassery, Kochi-682033 Tel : 0484 3942480. **Kolkata :** 56-D, Mirza Ghalib Street, Kolkata-700 016. Tel : 22298784, 22298791 Fax : 033 - 22457341, 22297880. **Ludhiana :** G.T. Road, Miller Ganj, Ludhiana -141 003. Tel : 2530071, 2532167, Fax : 0161-2532167. **Madurai :** 117/6E, Madurai - Usilampatti Road, Meenakshipuram, Madurai-625 016. Tel : 2383920, Telefax : 0452-2383921. **Mumbai :** 19/21, Manohardas Street, P.B. No.1307, Opp. G.P.O., Fort, Mumbai-400 001. Tel : 22695040, 22696329, 22697041, Fax : 022-22695199. **New Delhi :** 7th Floor, 'Hansalaya', 15, Barakhamba Road, New Delhi-110 001. Tel : 23314053, 23317016, 23314428, Fax : 011-23314429. **Secunderabad :** 9-1-87, S.D.Road, P.B.No.46, Secunderabad -500 003. Tel : 27703042, 27804038, Fax : 040-27703770.

Centre Distance Adjustment : Fitting and Take-Up Recommendations

Belt Length (mm)	Р	J	PK PL		Ľ	PM		
(mm) ⁻	М	Т	М	Т	М	Т	Μ	Т
< 750	-10	+10	-11	+13				
750 - 1200	-10	+15	-12	+16	-15	+20		
1200 - 2000	-15	+20	-16	+22	-20	+25		
2000 - 3500	-20	+30	-23	+32	-30	+35	-40	+50
3500 - 6000					-40	+50	-50	+70
> 6000							-100	+130

All rights reserved by Fenner (India) Limited. No portion of the Catalogue can be reproduced in any form without authorisation of the copyright owner.